I am a PhD student with the IMPRS-IS program at the University of Tuebingen and the Max-Planck-Institute for Intelligent Systems, supervised by Georg Martius. I am interested in differentiable and amortized optimization, LLM safety and reasoning. Currently I am interning in the Fundamental AI Research (FAIR) group at Meta in Menlo Park, where I study LLM safety from a game-theoretical perspective, supervised by Arman Zharmagambetov. A few major themes of my research involve:
2021 - 2022
M.Sc. in Computer Science, University of Tuebingen
(4.00/4.00)
|
2018 - 2021
B.S. in Computer Science, University of Tuebingen
(3.73/4.00)
|
2015 - 2021
B.S. in Physics, University of Tuebingen
(3.80/4.00)
|
2023 - 2024
Research Scientist Intern, Meta, Fundamental AI Research (FAIR), New York City (with Brandon Amos on amortized optimization for LLM safety) |
2016 - 2019
Research Assistant, Max-Planck-Institute for Intelligent Systems, Tuebingen, Germany (with Georg Martius on differentiable combinatorial optimization) |
[Google Scholar: 0.9k+ citations]
Selected publications I am a primary author on are highlighted.
1. |
![]() Anselm Paulus*, Arman Zharmagambetov*, Chuan Guo, Brandon Amos†, and Yuandong Tian† ICML 2025 |
2. |
![]() Anselm Paulus*, Andreas RenĂ© Geist*, Pierre Schumacher, VĂt Musil, and Georg Martius Under submission 2025 |
3. |
![]() Anselm Paulus, Georg Martius, and VĂt Musil ICML 2024 |
4. |
![]() Anselm Paulus*, Subham Sekhar Sahoo*, Marin Vlastelica, VĂt Musil, Volodymyr Kuleshov, and Georg Martius ICLR 2023 |
5. |
![]() Anselm Paulus, Michal RolĂnek, VĂt Musil, Brandon Amos, and Georg Martius ICML 2021 (Spotlight, Oral at LMCA NeurIPS 2020 workshop) |
6. |
![]() Anselm Paulus*, Marin Vlastelica P.*, VĂt Musil, Georg Martius, and Michal RolĂnek ICLR 2020 (Spotlight) |
7. |
![]() Michal RolĂnek*, VĂt Musil*, Anselm Paulus, Marin Vlastelica P., Claudio Michaelis, and Georg Martius CVPR 2020 (Oral, best paper award nomination) |
8. |
![]() Michal RolĂnek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, VĂt Musil, and Georg Martius ECCV 2020 |
0.6k+ GitHub stars across all repositories.
1. | 2025 facebookresearch/advprompter | 162 | AdvPrompter (Adversarial attacks on LLMs) |
2. | 2024 martius-lab/diffcp-lpgd | 2 | Lagrangian Proximal Gradient Descent (now merged into CVXPY) |
3. | 2023 martius-lab/solver-differentiation-identity | 10 | Blackbox Identity Differentiation |
4. | 2021 martius-lab/CombOptNet | 72 | CombOptNet |
5. | 2020 martius-lab/blackbox-deep-graph-matching | 88 | Deep Graph Matching |
6. | 2020 martius-lab/blackbox-backprop | 346 | Blackbox Differentiation |
1. | 2024 AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs — Masaryk University, Brno, Czechia |
2. | 2022 On differentiable combinatorial optimization — Dagstuhl Seminar: Machine Learning and Logical Reasoning: The New Frontier |
International Conference on Learning Representations (ICLR): 2022, 2023, 2024, 2025 |
International Conference on Machine Learning (ICML): 2022, 2023, 2024, 2025 |
Neural Information Processing Systems (NeurIPS): 2021, 2022, 2025 |
Neural Information Processing Systems (NeurIPS) DiffCoAlg Workshop: 2025 |
Programming | C++, Java, Python |
Frameworks | JAX, NumPy, Pandas, PyTorch, SciPy, TensorFlow |
Toolbox | Linux, emacs, git, tmux, zsh, uv, vscode |
Last updated on 2025-09-06